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SECONDARY FLOW IN DIFFUSING CASCADES

Research Objectives

a. Develop a three dimensional rotational flow analysis and

a numerical solution procedure that can be used to determine the

flow in the passages of a cascade with large deflection angles.

b. Construct a test rig to study the secondary flow phenomena

in diffusion cascades with large deflections.

c. Obtain measurements of flow velocity , direction of

flow , endwall static pressure and total pressure losses for a

range of inlet Mach number representative of exit guide vanes.

d. Perform a parametric studies using the theoretical

analysis and the experimental data to determine the effect of

area diffusion on the secondary vorticity strength.

Status of the Research Efforts

1. The Analytical Work

i. The Problem Formulation:

The appropriate formulation for the equations governing the

motion of the three dimensional inviscid rotational flow has been

accomplished. The primary dependent variables in the formulation

are the three flow velocity components and the through flow

vorticity component. f~
—....

The momentum equation is expressed as: 

~~
V x = — 1 VP / ~ 

8 ~
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where ~ is the velocity vector, P is the total pressure, p is

the fluid density, and ~2 is the vorticity vector which is

defined as:

c z = V x v  (2)

For simplicity the solution is obtained for incompressible flow,

in which case, the continuity equation is given by:

= 0 (3)

The momentum equation (1), is not the suitable form to be used

since the pressure is not one of the dependent variables in the

formulation. Therefore, the Helntholtz equation, which is given

below, is used instead of equation (1),

V • = ~ 
• VV (4)

Equation (4) can be easily derived using equations (1), (2) and

(3). Equations (2), (3) and (4) are the governing equations,

and are solved for the three velocity components and the through

vorticity component of the three dimensional rotational flow.

ii. The Numerical Solution:

The through flow velocity and through flow vorticity

components are computed from He].mholtz equation using a marching

technique. The secondary flow velocities on the other hand are

determined from the simultaneous solution of the continuity

equation and the through flow vorticity equation. The approach

used in the numerical solution is iterative since the secondary

flow velocities appear in the convective terms and the through

flow velocity and vorticity contribute to the source and
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rotationality terms in the cross planes. These will be referred

to as the outer iterations, to distinguish them from those used

in the numerical solutions for the secondary velocities.

In order to develop and test the numerical solution without

the unnecessary added complications of the leading edge vortex,

a simple duct geometry was used, in order to be able to compare

the results of the computations with the experimental data of

reference 1, and also with the computational results of

references 2 and 3.

A great part of the effort in developing the numerical

methods have been devoted to the methods of computing the

secondary velocities. The governing equations for the secondary

velocity components are:

}._— (x1u1) + ~~~~
— (x 1u2) = x1 5 ( 5)

}_ -_ (u i) — f— (u2) = — (6)

Where u1 and u2 are the velocity components in the radial and

axial directions (x1, x2) respectively, S is the source/sink

term, and w is the through flow vorticity component.

Equation (5) represents the principal of conservation of mass

when the source term, S is expressed in terms of the through

flow velocity gradient.

Two different approaches have been tried for the solution

of the above equations. In the first approach, the secondary

velocities were expressed in terms of a stream function 4~ and
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a potential function $ as follows:

U — +
~~~~ - —- ~~~~

— (7 )1 x x x

u (8 )2 3x 2 x1 3x1

The governing equations for the potential and stream functions

~re obtained from the substitution of equations (7)  and ( 8)

into equations (5) and (6):

23 ~D ‘ ~ 1 ~~ —;-
~ 

;-
~ c~

--x
1 x2 1

and

+ - L. IL. = - ( 10)
~~~~ ~~ 

x1 3x~ 
1

With the following conditions over all of the boundaries:

(11)

(12)3n

where n is the direction perpendicular to the solid boundaries.

In the second approach, cross-differentiation was used to

obtain two higher order equations in the secondary velocities

U1, u~. By differentiating equation (5) with respect to x1
and equation (6) with respect to x2 and adding the results, one

obtains:
2 23 U

1 
3 U

1 1 3u1 1 3S 3w 3
~~ ~~~~2 

+— ~~--_ - _
~~u1 =~~_-- -~~

__ (1)
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and by differentiating equation (5) with respect to x2 and

equation (6) with respect to x1 and subtracting the results,

one obtains:

2 23 u2 + 2 + ~~ — __a = + !~L. + ~~
— (14)

X1 
3x1 3x 2 3x 1 x1

The velocity component, u~ , perpendicular to a solid boundary

must vanish.

= 0 (15)

In this approach, the required additional boundary conditions for

nonviscous flow are obtained from equation (6) written at the

boundaries

w ( 16)

where u~ is the velocity component in the direction tangent to

the boundary.

It is clear from equations (9) and (10) and from equations

(13) and (14) that in both approaches, the solution of two

second order partial differential equations of the Poisson type

is required. According to equations (11) and (12), the boundary

conditions are of the Dirichlet type for the stream function ~~,

and of the Neumann type for the potential function •. In the

second approach, according to equations (15) and (16), the

boundary conditions for the secondary velocities are of the

Neumann type over part of the boundary.

5
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In the course of this investigation , difficulties were

encountered in convergence of the numerical solution using

both approaches. It  was found that this was mainly  a result

of the inaccuracies in the calculations of the secondary

velocities , caused by the Neumann type boundary conditions.

Even w i th  the special techniques for handling these boundary

conditions in the numerical solution of Poisson equation ( 4 ) ,

problems were still encountered in the convergence of both

inner and outer iterations. At that stage , we went back and

reexamined very carefully previously surveyed three dimensional

flow computations and concluded that difficulties have always

been encountered in the convergence of the inviscid flow

solutions whenever the flow exhibited rotationality . A closer

examination of the studies in references 2 and 3 revealed that

those investigators introduced , under different kinds of

justifications , what is equivalent to artificial sources and

sinks to force the convergence of their solutions. We

therefore decided to concentrate on developing an effective

method for solving the continuity and the vorticity equations

in order to avoid , if possible , the convergence problems

associated with the resulting Poisson equations with Neumann

boundary conditions.

In looking for a fresh approach, for computing the secondary

velocities, we introduced a new concept in our analysis. Instead

of using the stream and potential function , as in equations

(7) and (8), a new type of function which will be referred to
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as “The streamlike function” was defined.

The Streamlike Function

The streamlike function is defined , such that the continuity

equation (5) is identically satisfied . The secondary velocity

components (u1 and u2) are expressed in terms 
of the streamlike

function and the source term, S, as follows :

1 1 ( 17)

and
1.— ~~— .

~~~~~ —

The deviation from the standard definition of the stream function

appears in the velocity component u1, given by equation 
( 17)

When equations (17) and (18) are substituted into equation

(6), one obtains:

2 23 ~ 3x1
~ + — — ( 19)

3x~ 3x~ 
X
1 

3X
1 

1

where

.., = x  w + 2— IX  Sdx (20)
1 1 3x2~~ 1 1

Since the continuity equation (5) is identically satisfied ,

the continuity and rotationality equations are actually transformed

through the use of the streamlike function into a single

Poisson equation (19).



The condition of zero normal velocity component at the

stat ionary solid boundaries , is expressed in terms of the

streamlike funct ion , 
~i ’ as:

‘1 = — 1j x 1 S dx1 dx., (2 1 )

It is clear from equation (21) that the boundary conditions for

the streamlike function a~e of the Dirichiet type. The novelty

of the new approach lies in the fact that instead of having

to solve two Poisson equations at each cross plane , one now

has to solve a single equation in the streamlike function.

Another advantage of the new streamlike function is the Dirichiet

boundary conditions over all the boundaries.

One should mention here that a different streainlike

function , ‘
~~2~~ could also be defined to accomplish the same task.

The deviation from the traditional stream function definition

can be included i~ the u 2 velocity component as follows :

1 ‘“ 2u = ——  (22)1 x1 3x 2
and

1 ~~2 1u = — — — +- - — f x  Sdx (23)2 x1 3x 1 x1 1 2

The streanUike function also satisfies equation ( 5 )  identically.

Whe n the above two equations are substituted into equation (8 ) ,

one obtains:
2 2

~ ~ ~~ 1+ .~~~~— - — —--—~- = — .y ( 2 4 )2 2 x ~x 21 1

a

, . -
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where

~., = x 1~~— x 1 -~— — f S d x , (25)
— 

~
.l  —

A single second order equation in the streanüike function 
~2

results also in this case, with Dirichiet boundary conditions .

The details of this new approach , as well as examples of its

applications in different flow problems has been published (Ref. 5)

as AIAA Paper No. 79- 146.

The formulation of the problem in terms of the new stream-

like function is expected to result in saving computer time

and storage . One should need fewer i terations to solve the

single Poisson equation with Dirichiet boundary conditions.

In addition , we believe that the presence of the source integral

over the passage cross—sectional  area in the boundary conditions

(Eq. 21) could even accelerate the convergence of the solution. For

all these reasons , the new formulation is believed to be very

important in achieving the objective of the analytical

numeric~~). investigation. We are presently incorporating this

formulation into the numerical solution procedure. The primary

results obtained so far leads us to believe that the original

problems in the convergence of the numerical solution have

been overcome .

9
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2.  The Experimental Work

We are now in the process of building our tunne l for the

experimenta l flow measurements. Most of the experimental efforts

have been directed up till now at acquiring through NSF

sponsorship a Laser Doppler Velocimeter (LDV) system which will

be used in the experimental measurements. This system consists

of an argon-ion laser (Spectra Physics Model 164-09) , a back

scatter type optical system , an oscilloscope , a si~ na1

processing system (Therrno Systems , Inc., Model 1990) , and a

pdp-8e computer. The laser and all the optical components

have been mounted on a traversing mechanism in order to be

able to survey the tunnel test sections. The laser-doppler

technique has been tested in a simpler flow field of another

tunnel .  Aluminum oxide powder was used as the seeding material

because of the relative ease with which it can be introduced

into the flow. The accuracy of the velocity measurements

have been tested and the data was found to be reproducible and

precise enough to j u s t i f y  confidence in the experimental system .

This LDV system wil l  be very useful in our measurements since

flow disturbances caused by the presence of probes in this

highly complicated three dimensional flow f ield wi l l  be avoided .
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